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The respective effects of an external field and departure of suspended particles from 
spherical shape on the rotary motion of axisymmetric dipolar particles placed in a 
homogeneous shear flow are studied. The analysis shows that, owing to cumulative 
effects, even a weak external field or a small deviation from spherical shape can 
significantly modify the resulting motion relative to that found in the corresponding 
classical problems of torque-free particles or dipolar spheres in homogeneous shear. 
Thus, unlike the latter problems, there are in the present problem cases when all 
particles approach a single limit cycle; in other cases multiple stable equilibria 
simultaneously coexist and the orientation space is appropriately divided into 
corresponding domains of attraction ; in some situations possessing appropriate 
symmetry properties, particles may, depending upon their respective initial orien- 
tations, either move along a family of periodic orbits or else converge to a stable 
equilibrium orientation. 

1. Introduction 
We study the rotary motion of a non-spherical dipolar particle placed in a 

(macroscopically) homogeneous shear flow in the presence of an external field. This 
motion is essentially governed by a pair of competing orienting mechanisms: (i) the 
shear field which, depending on particle shape and the relative magnitude of the strain 
and rotation (the respective symmetric and antisymmetric) components of the 
undisturbed fluid-velocity gradient, tends to align the non-spherical particle with the 
principal directions of strain or else rotate it about the fluid vorticity vector; (ii) the 
orienting torque acting to align the embedded dipole with the external field. Such 
interaction with an external field may result for instance from asymmetry of particle 
superficial geometry or internal mass distribution (e.g. an asymmetric dumbbell under 
gravity) as well as from magnetic or other material properties (e.g. a ferromagnetic 
particle in the presence of a magnetic field). 

Apart from the fundamental interest in the present problem, the subsequent analysis 
is relevant to the macroscopic description of the transport phenomena and rheological 
properties of (dilute) suspensions of such non-spherical dipolar particles (e.g. the 
potential of controlling the rheological behaviour of a ferrofluid by means of an 
appropriate external magnetic field). 

The rotary motion in a simple shear flow of spheroids was first analysed by Jeffery 
(1922). In the absence of external torques it was possible to integrate the equations of 

f Present address : Department of Mathematics, Massachusetts Institute of Technology, 
Cambridge MA 02139, USA. 
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motion to obtain closed-form analytical expressions for the periodic particle orbits. 
The analysis was later extended by Bretherton (1962) to general axisymmetric particles 
possessing fore-aft symmetry and by Hinch & Leal (1979) who investigated the motion 
of triaxial ellipsoids. 

The incorporation into the problem of the additional element of external torques 
considerably complicates the analysis. Thus, even for spherical particles, integration of 
the equations of motion is only possible in the particular cases when the external field 
is either parallel or perpendicular to the fluid vorticity vector. This latter problem, of 
spherical dipolar particles, was first discussed by Hall & Busenberg (1969). 

Following the formulation in the next section of the general problem for the rotary 
motion of an axisymmetric dipolar particle, we present a phase-plane analysis of the 
particular cases when the external field is either perpendicular ($3) or parallel ($4) to 
the plane of the (simple) shear flow. In $ 5  we make use of some asymptotic results and 
provide a qualitative picture of particle motion when the external field acts in an 
arbitrary direction. Concluding remarks summarizing the main results of the present 
contribution appear in $6 .  

2. Formulation of the problem 
Consider an axisymmetric dipolar particle placed in a homogeneous shear flow 

under the action of an external field. The orientation of the particle can be represented 
by the unit vector e attached to its axis of symmetry (figure I), thus its motion in 
orientation space may be described by an appropriate trajectory on S,, the surface of 
the unit sphere. Assuming that the particle Reynolds number is small and neglecting 
the effects of particle and fluid inertia, e satisfies the equations of motion 

e = (of - B : S + m ,  T )  x e, (2.1) 
wherein t denotes the time derivative of e, of is the angular velocity of the fluid and 
S is the rate of strain - the symmetric part of the (undisturbed) fluid-velocity gradient. 
The third-order pseudotensor B = B(e) is the orientation-specific shear-diffusion 
coefficient. For a body of revolution B is expressible in the form 

B = : B [ ~ . e e + ( ~ . e e ) + ]  (2.2a) 

in which E is the permutation pseudotensor, and for a third-order tensor the post- 
transposition operator denotes (Aiik)+ = Aikj. The scalar B is an intrinsic coefficient; 
for a spheroid whose axis ratio is R 

R2- 1 B = -  
R2+ 1 

(2.2 b) 

and thus obviously IBI < 1. (For axisymmetric particles of arbitrary shape R represents 
an effective axis ration.) Finally, m, is the mobility coefficient corresponding to rotation 
of the particle about a transverse axis and T is the torque exerted on the particle by the 
(presumably constant) external field F 

T = M x F ,  (2.3) 
where M = pe is the (permanent) dipole moment of the particle. 

The present analysis focuses on the simple shear flow 

u =;GX, (2.4) 
" 1  1 

wherein (iJ, k) is a right-handed triad of orthonormal space-fixed unit vectors in the 
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FIGURE 1. Definition of axisymmetric particle orientation e = ( O , $ )  in a simple shear flow. 

directions of the (x ,  y ,  z )  axes, respectively, and the scalar G denotes the rate of shear. 
It is, however, worthwhile to mention that (cf. Bretherton 1962; Hinch & Leal 1972a; 
Brenner 1974) through an appropriate reinterpretation of the above parameters B and 
G, the applicability of subsequent results can be extended readily to the wider class of 
planar homogeneous shear flows 

u = ;(E-Q)y+j(E+SZ)x 
provided that 

BE < 52. 

(2.5a) 

(2.5 b) 

In the foregoing E and 52 are, respectively, the magnitudes of the rate of strain and 
(half) the vorticity in the flow field u. The latter restriction thus ensures that the 
influence of the fluid vorticity acting to rotate the particle prevails over the tendency 
to align its axis with one of the principal direction of S, thus leading, in the absence 
of an external field, to a periodic rotary motion of the particle characterized by closed 
orbits on S,. When (2.5 b) is not satisfied as, for instance, when a particle for which 
1B1 > 1 is placed in a simple shear flow (E  = 52), the foregoing balance is reversed and 
the motion is qualitatively different (Bretherton 1962). In subsequent analysis we 
assume that JBI < 1. 

Let (e, &, i#) be a right-handed triad of particle-fixed unit vectors and (8, $) spherical 
polar coordinates (figure 1). Expressing t in this frame of reference, 

t = &e+l#dsine,  (2.6) 
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one obtains from (2.1) a pair of coupled autonomous first-order scalar equations for 
8 and $ as functions of the non-dimensional time T = Gt : 

(2.7a) 

and 6 = +B sin 28 sin 2$ + h[sin Bcos 8 cos (4 - 6) - cos Bsin 01. (2.7b) 

In the above the polar angles (B, 6) represent the direction of the external field (cf. 
figure 1) and the dimensionless parameter h = pm, F/G (in which F = 1Fl) represents 
the relative effects on the particle rotation of the external field and the fluid shear, 
respectively. In the respective limits h = 0 and B = 0 the latter equations reduce to the 
classical problems of the motion in simple shear of torque-free axisymmetric particles 
and dipolar spheres. The rest of this contribution examines the respective effects of the 
external field and departure from spherical shape on the motion of a dipolar particle. 

It is useful to note that the problem posed by (2.7) remains invariant under the 
following transformations : 

6) 
(ii) 

(2.8a) 

(2.8 b) 

and 

(iii) B+-B, $+g+fn, $+@+fn.  (2.8 c) 

These symmetry properties respectively allow us to make the following restrictions : 
(i) e to the interval [0, $4 and (ii) 6 to the interval [0, n],, as well as (iii) consider only 
prolate particles 0 < B c 1, without loss of generality. For later reference we mention 
the additional invariance under the transformation 

(iv) G n - 8 ,  J+n-$, $+-$, T + - T .  (2.8 d )  

Thus, when the direction of the external field is reflected with respect to the direction 
to fluid velocity (j?, the corresponding particle trajectories are obtained through 
reflection with respect to the (x,z)-plane and, a reversal of the sense of the motion 
along the resulting paths. 

- - 

3. External field acting perpendicularly to the plane of flow (e = 0) 
When e= 0 the system (2.7) reduces to 

4 = f(l + B c o s ~ $ )  (3.1 a )  

and 6 = t B  sin 26 sin 24 - h sin 8. (3.1 b)  

The first of these equations is identical to the corresponding equation governing the 
rotary motion of an axisymmetric particle in the absence of an external field and is thus 
readily integrated to yield the classical result for $(T)  (see (5.4a), (5.5a)). When 
IBI c 1, 4 > 0 for all ( 8 , $ ) E S 2 .  Thus, $ grows monotonically which means that e 
rotates about the vorticity vector. From (3 .1  b) we see that when the external torque is 
sufficiently strong, namely h > B/2,  6 c 0 over the entire S,  domain (excluding the 
poles 8 = O,n), in which case all the trajectories, except for the one starting at the 
unstable equilibrium point 8 = n, monotonically converge to the stable equilibrium 
point 8 = 0. If h c B/2 there exist domains in S,  where 8 > 0. However, even in this 
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case, for any initial condition (8, =k x), limT+m O(7) = 0, although the convergence is not 
necessarily monotonical. This latter statement is readily verified by comparison with 
the case h = 0. Starting at some arbitrary point (8,,$,) in S,, the Jeffery orbit 
returns after an entire period of 2n in $ to the same point. Evidently, from (3 .1  b) 
dO/d$l,,, < dB/d$l,=,, hence no orbit representing a solution of (3 .1)  can possibly in- 
tersect the Jeffery orbit corresponding to the same initial condition ($,, $,,). Therefore, 
8($,) > 8($,, + 2n) and the sequence {8($, + 2xn)},"=, is monotonically decreasing 
and hence converges to the only possible limit, namely 8 = 0. It can be established? that 
under the action of a strong ( A  9 1 )  external field, 8(7) is approximated (for all 7) by 

tan ;8 z tan fe(o) ( 1  + B cos 2$)-lI2[ 1 + O(h-l)] e-AT. (3.2) 
A similar exponentially rapid convergence to the stable equilibrium orientation is also 
expected in the presence of an arbitrarily oriented (e + 0) strong ( A  9 1) external field. 
The other limit ( A  4 1 )  is considered in $ 5  within the broader context of arbitrarily 
directed weak external fields. The analysis shows that, when h 4 1 ,  the particle slowly 
drifts across Jeffery's orbits, gradually spiralling towards 8 = 0. 

4. External field acting in the plane of shear (@ = fn) 
In this case we obtain from (2.7) 

sin (4 - 6) 
sin 8 

fj = i(1 +Bcos2$)-h (4.1 a )  

and 8 = @sin 28 sin 24 + A  cos BCOS (4 - $1. (4.1 b)  

Here particle trajectories are symmetric relative to the equator 6 = ix (cf. (2.8a)).  We 
therefore limit subsequent analysis to the upper hemispherical domain 0 < 6 < :x. 

4.1. The lines 6 = 0, b = 0 
From (4.1 a), d = 0 when 

2h sin ($ - 6) 
1+Bcos2$ ' 

sin8 = 

Since sin 8 2 0 throughout S,, the curves d = 0 only exist in the domain 0 < $ - 6 < x 
and pass through the pole 8 = 0 in the directions $ = 6, $ = $+x. Transformation 
of (4.2) into Cartesian coordinates reveals that the projection of the curve d = 0 onto 
the shear (x ,  y)-plane is an ellipse whose axes are respectively parallel to the (x ,  y )  
coordinate axes. For sufficiently small h < A, = (1 -B) /2 ,  this ellipse is contained 
within the domain 0 < 6 < sin-l(h/h,) (cf. the dash-dotted line in figure 3b).  When 
h > A, = ( 1  + B ) / 2  the ellipse 4 = 0 necessarily intersects the unit circle (the 'equator'). 
In general, the points of intersection are obtained from the solution of a quartic 
algebraic equation. When h is sufficiently large there always exist two intersections (e.g. 
the points A and C in figure 3a)  which, in the limit A+co, approach the respective 
directions 6 and 6+ n. Finally, for sufficiently large IBI (i.e. particles significantly 
deviating from a spherical shape) and 6 sufficiently close to fn (i.e. a sufficiently small 
angle between the respective directions of the external field and the undisturbed 
streamlines), there exists an intermediate domain of h values where four intersection 
points appear (cf. points A, B, C and D in figure 5) .  

t Details of the calculation may be obtained upon request directly from the authors or from the 
Journal of Fluid Mechanics Editorial Office. 
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From (4.1 b), the requirement b = 0 is satisfied on the equator, 8 = in, as well as 

2h cos (4 - 6) 
sin8 = - 

B sin 2q5 (4.3) 

Since the solutions of (4.3) satisfy O(q5 +inn, $-in, B) = 8(q5,6, B), the discussion can 
be confined to the domain 0 < 6 < in. The transformation of (4.3) into Cartesian 
coordinates shows that the projection of the curve 8 = 0 onto the (x,y)-plane is a 
hyperbola whose asymptotes are, respectively, parallel to the coordinate axes. The 
branch of this hyperbola which passes through the pole 8 = 0 in the direction 
q5 = $&in is always physically meaningful (cf. the dashed curve BOD in figure 
3). The second branch only appears within the unit circle for sufficiently small 
A(< [Bl[(cosr$)2/3+(sin$)2/3]3/2). Finally, in the cases $ = 0,in the lines 8 = 0 either 
coincide with or are parallel to the (x,y)-axes (cf. figure 5b). 

4.2. Equilibrium (critical) points 
The above examination of the lines 4 = 0 and 8 = 0 indicates the possible existence of 
two kinds of equilibrium points : 

(i) points on the equator (8 = in), which exist provided that the ellipse 4 = 0 
intersects with the equator; 

(ii) points off the equator, at which (4.2) and (4.3) are simultaneously satisfied by 

tan q5, = - R2 cot 6, (4 .44  

2h 
l + B  

sin 8, = - (R4 cos2 F+ sin2 $)'/'. (4.4 b) 

From these expressions, it is evident that such points do not exist for h > A, whereas 
for h < A, they exist irrespective of the value of 6. 

The nature of the equilibrium (critical) points e, = (Oc, 4,) is examined by making 
reference to the Liapunov theorem relating in the present problem their stability to the 
eigenvalues of the (two-dimensional) surface dyadic? 

Thus, according to the latter theorem, the existence of an eigenvalue possessing a 
positive real part is a sufficient condition for instability. However, if all the eigenvalues 
of V,eJec have negative real parts, the equilibrium point is stable. At an equilibrium 
point on the equator (8, = in) 

V, elec = - io $[A cos (q5c - 5) +iB sin 2$,] - i4 i4[A cos (4, - 6) + B sin 2q5c]. (4.6) 

The scalar coefficient of i4 f4 is (a$/aq5),=,,, (see (4.5) and (4.1 a)). Since 4 is a periodic 
function of q5, half of the equilibrium points (where 4 is an increasing function of q5) 
are unstable and the other half (where 4 is decreasing) are stable with regard to 

t The rotary motion of the particles can be represented by the three-dimensional velocity field u 
= re corresponding to translational motion of the particles on spherical ( r  = const) surfaces. At 

the p9int r -re, the velocity gradient is the three-dimensional dyadic Vu = ee+ Vee wherein 
V, = i,a/aO+i, (l/sin 0) a/a$ is the surface portion of the three-dimensional gradient operator. At a 
critical point, however, the first term in the expression for Vu vanishes and the second term reduces 
to the two-dimensional dyadic (4.5). 
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disturbances in the l# direction. The scalar coefficient of $6 is (i3d/i36)),=,,, (see (4.5) and 
(4.1b)). Thus, if for 6 < :n (6 > in) we have 8 > 0 (6 < 0), then this coefficient is 
negative and the equilibrium point is accordingly stable to disturbances in the lo 
direction and vice versa. 

At an equilibrium point e = e, off the equator, we obtain from (4.2) in conjunction 
with (4.3) 

v, el,, = ;lo l@ B sin 24, COS, 6, - $+ &(I - B cos 24,) cos 6, 

1 + Bcos 24c) cos 6,-& i6 Bsin24,. (4.7) 

Here, the eigenvalues of V,el,,, S,(j = 1,2), satisfy the quadratic equation 

Sg + (;B sin2 6, sin 24,) S, + :( 1 - B2) cos2 6, = 0. (4.8) 

Thus (cf. (4.4a)), e,  is a stable or an unstable critical point according to whether 
in < $ < x or 0 < $ < :x, respectively. Furthermore, with increasing h when e, 
approaches the equator (cf. (4.4b)), the critical point which for small h was a (stable 
or an unstable) spiral point, turns into a node (of the corresponding nature). Finally, 
when 6 = 0, in, the eigenvalues of V, elec are purely imaginary which suggests that e, 
may be either a centre or a spiral point. By invoking symmetry considerations, it will be 
established in the next subsection that all the solutions are periodic for 6 = 0, in in 
which cases the equilibrium point e, is indeed a centre. 

The evolution with h of the phase-plane configuration is summarized in figure 2 
which describes the variation of the type and location of the (projections on the (x ,  y)-  
plane of the) critical points in the upper hemispherical domain for (a) B = 0.5,6 = 45"; 
and (b) B = 0.8, 6 = 88". The numbers on the figure indicate the corresponding values 
of A. In both parts of the figure there initially appears, for small values of A, only a 
single critical point. With increasing h these points move away from 6 = 0 along 
straight radial lines (cf. (4 .4~)) .  

In figure 2(a) these critical points are initially unstable spiral points marked by the 
crossed circles (this situation corresponds to the case presented in figure 3b). For 
h > 0.310 these points turn into unstable nodes denoted by squares. At h = 0.323 there 
appears the saddle-node point marked by the asterisk at the point where the ellipse 
4 = 0 first touches the unit circle. For each h in the intermediate interval 0.323 < h < 
0.335 following this saddle-node bifurcation there exist three critical points, namely a 
stable node and a saddle point on the equator (respectively denoted by the rhombi and 
triangles) together with an unstable node within the unit circle. At h = 0.335 there 
appears another saddle-node bifurcation (marked by the asterisk at the common 
intersection of the ellipse 4 = 0, the hyperbola 6 = 0, and the unit circle). For still 
larger values of h the saddle points disappear. There only remain the stable and 
unstable nodes on the equator (as in figure 3a). With increasing h the former node 
approaches the direction C$ of the external field. 

Figure 2 (b) illustrates some qualitatively new features. Following the second 
bifurcation when, at h = 0.620, the ellipse 4 = 0 touches for the first time the lower 
part of the unit circle at the point marked by the corresponding asterisk, there appears 
the intermediate regime of h values where four critical points simultaneously exist 
along the equator. For 0.620 < h < 0.859 these include a stable node, a pair of saddle 
points, and an unstable node (together with an unstable node or spiral point off the 
equator; see e.g. figure 5a). For 0.859 < h < 0.901, following the saddle-node 
bifurcation at h = 0.859, there remain the four critical points on the unit circle (a pair 
of unstable nodes, a stable node and a saddle). 
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FIGURE 2. Variation of the location and nature of equilibrium points with the external field intensity 
A, for (a) 6 = 45" and B = 0.5; (b) 6 = 88" and B = 0.8, 0,  Stable node; 0, unstable node; 0, 
(unstable) spiral point; A, saddle point; *, saddle node. The numbers indicate the corresponding 
values of A. 

In the case 6 = 90" (which is not presented here) the picture becomes symmetric with 
respect to the x-axis, the negative part of which is the locus of the critical points within 
the interior of the unit circle. It will be established later on that these points are centres 
(rather than spiral points, see figure 5b). 

Making use of the symmetry property (2.8 d )  the description appropriate to 
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90" < 6 < 180" is obtainable via a reflection of the picture corresponding to 180" - 6 
with respect to the x-axis. The nature of the critical points thus obtained changes from 
stable to unstable and vice versa (cf. the discussion pertaining to figure 5a). 

4.3. Particle trajectories 
The results of the preceding subsections are now applied to obtain a qualitative 
description of particle paths in orientation space. We consider the cases where only a 
single branch of the hyperbola 6 = 0 (namely, the one passing through the pole 
q5 = 0) is physically meaningful, while the ellipse corresponding to 4 = 0 either 
intersects the equator twice or else is entirely enclosed within the unit circle. (The same 
approach could be applied to the analysis of all other cases.) 

A typical description of the former case is presented in figure 3 (a). The curves AOC 
and BOD, along which 4 = 0 and 6 = 0, respectively, divide the phase plane into the 
four domains marked by I, 11, I11 and IV. The respective combinations of signs of 4 
and 6 pertaining to the various domains are 

(4.9 a, b) 

(4.9 c, d) 

The short arrows marked on AOC and BOD point in the sense of admissible transitions 
between adjacent domains, namely 

III+II, III+IV, II+I, and I+IV. (4.10) 

These are established by determining the signs of the respective second-order time 
derivatives &,o and $Id=,. (Alternatively one can make use of (2.7) and (4.9) together 
with the convexity of both AOC and BOD.) 

The above discussion enables the qualitative construction of particle trajectories 
(which are illustrated in the figure by the curves respectively originating at E, and E,, 
obtained by numerical integration of (4.1)). A trajectory starting in region IV will stay 
there and therefore, since O(7) and 4(7) are both monotonically increasing functions of 
7, will eventually converge to the stable equilibrium point C .  An orbit originating in I 
can converge to C either directly or via domain IV. A solution beginning in I1 must 
reach I and then C. Finally, a path starting at I11 must reach C, either exclusively 
through IV (like the one beginning at El), or via 11, then I, and, possibly, IV (as in the 
trajectory starting at E,). In summary, all possible trajectories eventually converge to 
the stable equilibrium at C. (This convergence to the stable equilibrium orientation can 
also be established from the Poincare-Bendixon theorem since the absence of critical 
points within the interior of the unit circle excludes the possibility of periodic solutions 
in the present case.) 

A typical phase-plane description of the second case to be considered appears in 
figure 3 (b). As in the preceding figure, the curves 4 = 0 and b = 0, denoted respectively 
by the dash-dotted and dashed lines, divide the phase plane into the four domains - 
I, 11, I11 and IV - at which 4, 6 satisfy the respective relations (4.9~-d). The admissible 
transitions between adjacent domains are established in a similar manner to the 
preceding example and are indicated by the respective short arrows on the curves 
6 = 0 and 6 = 0. As a result we conclude that particle paths consist of either 'short' 

I + I1 + I11 + IV + I (4.1 1 a) 

I (6  > 0, 4 < O} ,  II(6 < 0, 4 < O} ,  
III(6 < 0, 4 > O } ,  IV(6 > 0, fj > O}. 

(like the one starting near A) or 'long' 

I - + I I + I  (4.11b) 
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FIGURE 3. Projections on the plane of shear of particle trajectories in the case of an external field 
acting in the direction $ = in within the shear plane for B = 0.5 and (a) h = 1, (b) 0.25. Solid lines 
denote particle orbits; dashed and dash-dotted lines respectively denote 0 = 0 and $ = 0. The arrows 
on the latter curves mark the sense of admissible transitions between adjacent domains. 
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(as the one originating at E) trajectories. One still needs to determine whether these 
trajectories are closed or spiral. In the cases 6 = 0, in only periodic solutions are 
possible: when 6 = in, d8/dq5 is an odd function of q5, and therefore 8 is an even 
function of 4. This symmetry relative to the x-axis leads to the conclusion that an orbit 
which intersects the x-axis twice is necessarily closed. Since in this case the eigenvalues 
of Vet), are purely imaginary (cf. (4.8) et seq.), particle trajectories cannot approach 
this critical point monotonically. It is thereby established that the equilibrium point e, 
is a centre and all the orbits must be closed. When 6 = 0, a similar reasoning based on 
the symmetry relative to the y-axis in conjunction with (4.8) leads to the same 
conclusion. When 6 $: 0: F,. it has been established in the preceding subsection (see 
(4.8) et seq.) that any equilibrium point off the equator is either a spiral point or a node. 

The foregoing discussion is illustrated in figure 3 (b) by the spiral particle trajectories 
originating at E and near A (obtained by numerical integration of (4.1)). According to 
(4.8) in conjunction with (4.4a), the critical point A is an unstable spiral point (for 
q5 = in) and indeed both orbits move away from A and eventually converge to a 
limit cycle along the equation 0 = fn (which again is in agreement with the 
Poincare-Bendixon theorem). 

The motion of slightly deformed spheres 
In the context of the latter example it is enlightening to consider the asymptotic limit 

of slightly deformed spheres ( B  x o(1)) in the presence of a sufficiently weak ( A  < 1/2) 
external field. In these circumstances a dipolar sphere undergoes a periodic rotary 
motion during which the vector e attached to the dipole axis traverses one of an infinite 
family of closed circular orbits on the surface of the unit sphere (the specific trajectory 
being selected according to the orientation of the dipole axis at some initial instant of 
time). 

Similarly to Hinch & Leal (1972b), we select here a right-handed space-fixed 
Cartesian frame of reference (x1,x2,x3) such that the x,-axis is parallel to the 
undisturbed fluid vorticity vector and the direction of x, coincides with that of the 
external field (see figure 4). The rotary motion of the particle is parameterized in terms 
of a, the polar angle of the permanently fixed axis about which the dipolar sphere 
rotates (the orbit parameter), together with p, the phase angle measured counter- 
clockwise along the circular trajectory ( p  = 0 corresponding to the orbit point 
where e is closest to the xl-axis). Expressing the components of e and e in the frame 
(xl, x,, XJ, it is established? from the equation of motion (2.1) that 

and 

. 1 Bsina 
a = -- {[el cos 01 - (e: + 2e3 (el cos a - e, sin a)] sin 255 

2 el 
+ e,[2e1 e2 cos a + ( 1  - 2e3 sin a] cos 26}, ( 4 . 1 2 ~ )  

1 x icosa+Acosp+O(B), (4.12 b) 

in which ei(i = 1,2 3) denote the respective components of e in the (xl, x2,  xJ frame of 
reference and A We thus anticipate that for B z o( 1 )  the 
solution is approximately the periodic orbit of a dipolar sphere slowly modified by 
particle drift across orbits. This suggests the multiple-timescale expansion 

[A2 - ( 1  / 4 )  sin2 

( 4 . 1 3 ~ )  

(4.13 b) 
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Z 

f 
i 

FIGURE 4. Definition of orbit coordinates for slightly deformed dipolar spheres. 

where T,  = BT (4.14) 

is the ‘slow’ time variable. Substitution into (4.12~) of the expansions (4.13) yields at 
the O( 1) leading order 

aa,/aT = o (4.15~) 

and ap,/aT = ; C O S ~ , + A C O S ~ , .  (4.15 b) 

The former of these equations is readily integrated to obtain a, = a , ( ~ ~ ) .  The latter 
equation is identical to the equation governing the motion of a dipolar sphere (cf. 
Brenner 1970; Hinch & Leal 1972b). For h < 1/2 it yields periodic solutions in T .  

Our main goal is to determine the variation of a, on the slow timescale. Writing the 
O(B) balance of (4.12~) and imposing the requirement that a, be periodic in T leads 
after some manipulation to 

While (4.16) could be integrated formally to yield T, = ~ ~ ( a , ) ,  it suffices for our 
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present purpose to examine the sign of i3a0/i37,. Throughout the allowable interval 
(1 -4h2)l/' < cos a < 1 ,  the expression in square brackets on the right-hand side 
of (4.16) is negative. Consequently, the sign of i3a0/i37, is determined by #, the 
direction in the plane of the flow of the external field. Thus, for 0 < # < fn, 
aa0/i3T1 < 0 and accordingly the particle drifts across the circular orbits in a 
spiral trajectory approaching the equator. Alternatively, when in < # < IT, i3a0/i37, > 0 
and the particle spirals towards the critical point. These results support the general 
statements - (cf. (4.8) et seq.) regarding the stability of the critical points. Finally, when 
$ = fn, i3a0/i37, = 0 and thus the departure from the closed orbit is, within the 
present calculation, a higher-order effect. This latter result is the asymptotic counterpart 
of the more general result established above, namely that, even for IBI which is not 
necessarily small, particle orbits are periodic in these cases. 

The intermediate regime 
Some interesting modes of behaviour appear in the intermediate interval of h values 

for which the ellipse 4 = 0 cross the equator 0 = in at four points (cf. $4.2). These 
are illustrated in figure 5 for h = 0.75 and B = 0.8. 

In figure 5(a) # = 88". The critical points on the equator are: A - a stable node; B 
and C - saddle points; and D - an unstable node. Additionally, there exists the 
unstable spiral point E within the unit circle. (The latter represents the projection on 
the (x, y)-plane of a pair of critical points symmetrically placed on the upper and lower 
hemispheres, respectively.) The dotted lines show the separatrices (entire trajectories) 
respectively joining the saddle point C to the stable node A and the spiral point E to 
the saddle B. Also shown are representative (positive) semi-trajectories starting at F 
and G. 

When # is replaced by n-# then, according to (2.8d), the appropriate picture is 
obtained via a reflection with respect to the horizontal x-axis accompanied by a 
reversal of the sense of the motion along the various orbits. Thus for # = 92", D', the 
reflection of D, is a stable node, the images C' and B' are saddle points, A' is an 
unstable node, and E is a stable spiral point. 

Despite the geometric similarity of the two pictures, there is an essential difference 
between particle motions in the two cases. For # = 88" all particles, irrespective of their 
initial orientations, converge for sufficiently long times to the stable equilibrium 
orientation at A. On the other hand, when # = 92" the separatrix from the unstable 
node A' to the saddle point C' divides the upper hemisphere into two domains of 
attraction. Only particles whose initial orientations are to the right of the entire 
trajectory A'C' will eventually reach the stable node D'. The rest of the particles will 
converge to the stable spiral point at E' (or else to its image on the lower hemisphere). 
For #= 92" and larger values of 0.859 < h < 0.901 (cf. figure 2b) a pair of stable 
equilibrium orientations appear simultaneously as stable nodes on the equator. (In 
general, the latter phenomena exist for some interval of external-field directions # > 
90". The extent of this interval increases with IBI, e.g. for B = 0.8, 90" < # < - l05O.) 

Also interesting is the symmetric case # = fn presented in figure 5 (b). In this case the 
dotted line joining the saddle points C and B divides the upper half of orientation space 
into two domains of attraction in which the respective modes of particle motion are 
qualitatively different. Particles originally to the right of BC will converge to the stable 
node A, whereas the domain to the left of BC is spanned by a family of periodic orbits 
encircling the centre at E. Similarly to any system having a separatrix connecting 
saddle points, the present configuration is structurally unstable. Indeed, # = fn is a 
bifurcation value where the topology of the system switches from an unstable spiral 
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FIGURE 5. Projections on the plane of shear of particle trajectories in the intermediate regime for 
B = 0.8, h = 0.75, and external field acting in the plane of shear in the direction (a) 6 = 88" and (b) 90". 
Entire particle trajectories joining critical points (separatrices) are presented by dotted lines; other 
orbits by solid lines; dashed and dash-dotted lines respectively denote 0 = 0 and 4 = 0. 
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point surrounded by a stable limit cycle to a configuration of a stable spiral point 
together with an unstable limit cycle. 

5. External field acting in an arbitrary direction e + 0, fn 

5.1. The limit of weak ( A  4 1) external field 
Assuming that 1 - IBI z O(l ) ,  one infers from (2.7a) that 8, z O(h) (and, of course, an 
additional point near the pole 0 = x). Substitution into (4.5) while utilizing (2.7) yields 
the eigenvalues of V,elec 

Sj = $;i(1-B2)1/2-hcos8+O(h2) (j= 1,2). (5.1) 

Thus, for cos 8 z O( l),  the critical point on the upper (lower) hemisphere is a stable 
(unstable) spiral point irrespective of 5. 

In the present limit, we anticipate that the particle's motion be nearly periodic along 
Jeffery orbits and that small departures from these closed contours resulting from the 
action of the external field will accumulate and manifest themselves in the long-time 
limit in the form of a slow drift of the particle across these orbits. Accordingly, we 
assume here the multiple-scale expansions 

8 = &(7,71) + h q 7 ,  + O(P) (5.2a) 

and 

in which 
(5.2b) 

(5.3) 

denotes the slow time variable and the constant 7, is some initial time. When the above 
are substituted into (2.7), one obtains at the O(1) leading-order balance 

and 

a$,/a7 = ;(I + B C O ~  24,) 

a0,/a7 = sin 28, sin 2$0, 

which system of equations is integrated (Jeffery 1922) to yield 

tan 4, = R tan [ 27c qj 
and 

(5 .44  

(5.4b) 

(5.5a) 

(5.5b) 

Thus, on the fast timescale, the rotary motion is indeed periodic, possessing the same 
period, namely T = 2x(R+ R-l) along all Jeffery orbits. The difference between (5 .5)  
and the rotary motion of an axisymmetric particle in the absence of an external field 
appears in the functional dependence on 71, the slow time variable, of ?(71), the phase 
shift, and C(7J, the orbit parameter. The latter dependence represents the possible slow 
drift of the particle across orbits. Eliminating the secular terms in the system of 
equations governing the respective first-order correction terms, el, and $1, one 
obtains? 

d.?/d~, = 0 (5.6a) 

and (5.6b) 

t Cf. the footnote pertaining to (3.2). 
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where E( ) denotes the complete elliptic integral of the second kind of the argument in 
braces. Equation ( 5 . 6 ~ )  shows that there is no phase shift at the leading order. From 
(5.6b) we conclude that for all 0 < < in (cose z O(1)) and C + 0 (i.e. 0 + 0,n) 
d C / d ~ ,  < 0, i.e. on the slow timescale, the particle drifts across Jeffery orbits spiralling 
towards the pole 0 = 0. This accords with the above statement (cf. (5.1) et seq.) that the 
critical point on the upper hemisphere is a stable spiral point. 

It is interesting to express the latter result in terms of the total flux induced by the 
external field across Jeffery orbits. This flux is given by 

where, by definition, only that part of e associated with the external field contributes 
to the integrand. Substituting for AC, 7), the weight function appropriate to rotary 
motion along Jeffery orbits (cf. Leal & Hinch 1971) and performing the requisite 
integration one obtains by comparison with (5.6 b) that 

when = in, Q = 0. Particle motion across Jeffery orbits (as seen, for instance, in the 
spiral trajectories of figure 3 b) is then a higher-order effect in A, depending upon local 
deviations of the particle from Jeffery orbits. Accumulation of these deviations due to 
stability or instability of the critical point results in ‘tightly’ winding (for h 4 1) spiral 
trajectories. 

5.2. Eflects of external field intensity and direction 
Under the action of a strong ( A  % 1) external field, the critical point on the upper 
hemisphere is located within an O(h-l) neighbourhood of (e, 6). (There is, of course, 
another equilibrium point located near (n - e, $+ 7c) on the lower hemisphere.) Making 
use of (2.7) and (4.5) we obtain the eigenvalues of V,el,, 

si = -h+sj+O(h-l) ( j =  1,2), (5.9) 

where s j ( j  = 1,2) satisfy a quadratic equation possessing a pair of real solutions 
provided that 

(1 - B2)l/’ [( 1 - B2 cos2 26)1/2 - (1 - B2)’/2] 
sin2 e > 2 

B2 sin2 2 6  9 (5.10) 

i.e. if e is sufficiently large, e,  is a stable node. (Thus, since the latter inequality is 
satisfied identically (for all B and 6) when @ = in, the critical point near 6 on the 
equator is always a stable node in agreement with the results of the preceding section.) 
When (5.10) is not satisfied, it is a stable spiral point (see figure 6). Finally, when 
IBI + 1, e, is a stable node for all e because, for rod-like (R+co) or disk-like (R + 0) 
particles, the rotary motion induced by the shear flow (2.4) is no longer periodic. 
(Evidently, the other equilibrium point is, respectively, an unstable node or spiral 
point.) 

We have seen that (cf. (3.2)), in the particular case of a strong external field acting 
perpendicularly to the plane of the shear flow (e = 0), the particle approaches the 
stable equilibrium orientation exponentially rapidly. The above results indicate that 
this behaviour is a general attribute of the strong-field limit. We thus suggest the 
following summary of the effects upon the motion of the particle of the field intensity 



Axisymmetric dipolar particles in shear JEow 259 

FIGURE 6.  Effect of external-field intensity on particle trajectories for B = 0.5; s = t ~ ,  6 = and the 
indicated values of A. The dashed curve marks the variation with h of the (stable) equilibrium 
orientation. 

of an arbitrarily oriented external field (assuming for the time being that cos 6 x O( l), 
i.e. the external field is not nearly coplanar with the plane of the flow). With increasing 
h the (stable) critical point gradually moves from the vicinity of the pole I9 = 0 towards 
the direction e = (e, $), of the external field. For a sufficiently strong field this critical 
point can change from a stable spiral point to a stable node, provided that (5.10) is 
satisfied. Furthermore, the particle, which for h 4 1 slowly approaches the equilibrium 
point along a winding spiral trajectory, converges to e, more and more rapidly with 
increasing A. The foregoing description is illustrated in figure 6 depicting the pro- 
jections on the plane of shear of particle trajectories starting at 19 = An, $ = 7c 
for B = 0.5, I9 = in, $ = in, and A = 0.25, 1, 10. The broken line marks the motion 
of the stable equilibrium point with increasing A. Although it is hardly discernible in 
the figure, the critical point remains a (stable) spiral point, as can be verified from 
(5.10). 

Finally, we consider the variation of particle motion with the direction of the 
external field, namely with cos e increasing from zero to O(l), for sufficiently small 
values of h (such that the corresponding critical points for e = i7c lie off the equator). 
When cos e = E 4 1, the eigenvalues of V,elec thus satisfy the quadratic equation 
(4.8) with the right-hand side replaced by an O(E) term. Thus, as long as cos 8, z O( l), 
these eigenvalues are complex and e, is accordingly a spiral point or a centre. 

With increasing cos e the particle trajectories and critical points become increasingly 
asymmetric (with respect to the equator). Thus, if for e= in both critical points are 
unstable spiral points, then with increasing cose the critical point on the upper 
hemispherical surface becomes less unstable and the one on the lower hemisphere 
becomes more unstable. At the same time, the limit cycle which, for 6 = in, coincides 
with the equator shifts closer to and eventually collapses onto the critical point on the 
upper hemisphere, at which instant the latter transforms into a stable spiral point (a 
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FIGURE 7. Effect of external-field direction on particle trajectories for B = 0.5, 6 = $, and h = 
0.25. The solid lines show the respective limit cycles corresponding to the indicated values of 8. 

Hopf bifurcation). This sequence of events is described in figure 7 which shows the 
respective (projections of the) limit cycles for h = 0.25, B = 0.5, = in and e = 88', 
86.5', 85", and 84.67'. (It is interesting to mention that, for these values of h and B, one 
finds via extrapolation of the linear O(s) expression for the real part of the eigenvalues 
of V,tlec that the latter changes its sign at 6 = 0.105, i.e. @ = 84" corresponding to the 
above-mentioned transformation in the nature of the critical point.) 

If both critical points are initially (for e= in) stable spiral points then, with 
increasing cos 6, the stability of the point on the upper hemisphere increases while that 
of the other one decreases. Here, the (unstable) limit cycle will gradually shrink 
towards the less stable equilibrium point on the lower hemisphere, eventually 
collapsing onto this point, at which instant the latter changes into an unstable spiral 
point. 

6. Concluding remarks 
The bulk properties of the suspension (which will be studied separately in a 

forthcoming contribution) are essentially determined (Batchelor 1970 ; Brenner 1972) 
by the orientational distribution of the particles which, in turn, depends upon the long- 
time behaviour of the rotary motion of the particles. By the PoincarC-Bendixon 
theorem, this behaviour may consist of periodic motion along one member of a family 
of closed orbits (in which case the particles retain dependence upon their respective 
initial orientations) or else the particles may converge to either a limit cycle or a stable 
equilibrium orientation. 

For comparison we mention here the results of Hall & Busenberg (1969) concerning 
the motion of a dipolar sphere in which case only two modes of motion exist: for a 
sufficiently weak ( A  < t) external field acting in the plane of the undisturbed shear flow 
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(0 = in), the particle rotates along one of an infinite family of circular orbits; in 
all other cases (i.e. whenever h 2 or 8=+ fx), the particle converges to a stable 
equilibrium orientation. 

The present results are both quantitatively and qualitatively different. For 8 = ix 
and sufficiently small values of A, the resulting motion depends upon 6, the azimuthal 
direction of the external field in the plane of shear. Thus, depending on whether 
0 < 6 < in or fx < 6 < x, the particle respectively approaches a limit cycle on the 
equator (8 = in) or a stable equilibrium orientation, whereas for 6 = 0, it continues 
to move along one of a family of closed orbits. For sufficiently large values of A, the 
particles converge to a stationary stable orientation. The transition between the respec- 
tive ‘small’ and ‘large’ values of h defines in the present problem a finite inter- 
mediate domain whose extent depends on both particle shape (represented by B) and the 
direction 6. In this intermediate domain more than one stable equilibrium orientation 
or different modes of behaviour may simultaneously coexist. An example of the latter 
situation is presented in figure 5(b) where particles originally in a certain part of 
orientation space approach the stable node whereas the rest of orientation space is 
spanned by a family of closed orbits. 

When the external field does not act in the plane shear and cos e M O( l), particles 
invariably approach the stable equilibrium orientation (irrespective of the value of h 
and B). However, contrary to the corresponding result for dipolar spheres, the 
transition between the cases cos 8 = 0 and cos @ M O( 1) is gradual. Thus figure 7 shows 
limit cycles for small but non-zero values of cos e. 
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